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Abstract—This paper describes a novel compound Markov
random field model capable of realistic modelling of mul-
tispectral bidirectional texture function, which is currently
the most advanced representation of visual properties of
surface materials. The proposed compound Markov random
field model combines a non-parametric control random field
with analytically solvable widesense Markov representation for
single regions and thus allows to avoid demanding Markov
Chain Monte Carlo methods for both parameters estimation
and the compound random field synthesis.
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I. INTRODUCTION

Physically correct virtual models require not only complex
3D shapes accorded with the captured scene, but also object
surfaces covered with realistic nature-like colour textures to
enhance realism in virtual scenes. Because the appearance
of real materials dramatically changes with illumination and
viewing variations, any reliable representation of material
visual properties requires capturing of its reflectance in as
wide range of light and camera position combinations as
possible. This is a principle of the recent most advanced
texture representation, the Bidirectional Texture Function
(BTF) [1]. The primary purpose of any synthetic texture
approach is to reproduce and enlarge a given measured
texture image so that ideally both natural and synthetic
texture will be visually indiscernible. BTF function is repre-
sented by thousands of measurements (images) per material
sample, thus its modelling prerequisite is simultaneously
also significant compression capability [2].

Compound random field models (CMRF) consist of sev-
eral submodels each having different characteristics along
with an underlying structure model which controls transi-
tions between these submodels [3]. CMRF models were
successfully applied to image restoration [3]–[5] or segmen-
tation [6], however these models always require demanding
numerical solutions with all their well known drawbacks.

We propose a CMRF model which combines a non-
parametric and parametric analytically solvable MRFs and
thus we can avoid using some of time consuming iterative
Markov Chain Monte Carlo (MCMC) method for both
CMRF model parameters estimation as well as CMRF
synthesis.

II. COMPOUND MARKOV MODEL

Let us denote a multiindex r = (r1, r2), r ∈ I,
where I is a discrete 2-dimensional rectangular lattice and
r1 is the row and r2 the column index, respectively.
Xr ∈ {1, 2, . . . ,K} is a random variable with natural
number value (a positive integer), Yr is multispectral pixel
at location r and Yr,j ∈ R is its j-th spectral plane
component. Both random fields (X,Y ) are indexed on the
same lattice I . Let us assume that each multispectral (BTF)
observed texture Ỹ (composed of d spectral planes)
can be modelled by a compound Markov random field
model, where the principal Markov random field (MRF) X
controls switching to a regional local MRF model Y =⋃K
i=1

iY . Single K regional submodels iY are defined on
their corresponding lattice subsets iI, iI ∩ jI = ∅ ∀i 6= j
and they are of the same MRF type. They differ only in their
contextual support sets iIr and corresponding parameters
sets iθ. The CMRF model has posterior probability

P (X,Y | Ỹ ) = P (Y |X, Ỹ )P (X | Ỹ )

and the corresponding optimal MAP solution is:

(X̂, Ŷ ) = arg max
X∈ΩX ,Y ∈ΩY

P (Y |X, Ỹ )P (X | Ỹ ) ,

where ΩX ,ΩY are corresponding configuration spaces
for random fields (X,Y ). To avoid iterative MCMC MAP
solution, we propose the following two step approximation:

(X̆) = arg max
X∈ΩX

P (X | Ỹ ) ,

(Y̆ ) = arg max
Y ∈ΩY

P (Y | X̆, Ỹ ) .

This approximation significantly simplifies CMRF estima-
tion because it allows to take advantage of simple analytical
estimation of regional MRF models.

A. Region Switching Markov Model

The principal MRF (P (X | Ỹ )) can be, for example,
represented by a flexible K−state Potts random field [7],
[8]. Instead of this or some alternative parametric MRF,
which require a MCMC solution, we suggest to use simple
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θi = 0◦ φi = 0◦ θi = 30◦ φi = 0◦ θi = 45◦ φi = 300◦ θi = 75◦ φi = 0◦

Figure 1. BTF ceiling panel texture measurements (upper row) and their synthetic counterparts for various elevation (θi) and azimuthal (φi) illumination
angles.

non-parametric approximation based on our roller method
[9], [10].

The control random field X̆ is estimated using simple
K-means clustering of Ỹ in the RGB colour space into
predefined number of K classes, where cluster indices
are X̆r ∀r ∈ I estimates. The number of classes K
can be estimated using the Kullback-Leibler divergence and
considering sufficient amount of data necessary to reliably
estimate all local Markovian models.

The roller method is subsequently used for optimal X̆
compression and extremely fast enlargement to any required
field size. The roller method [9], [10] is based on the
overlapping tiling and subsequent minimum error boundary
cut. One or several optimal double toroidal data patches
are seamlessly repeated during the synthesis step. This fully
automatic method starts with the minimal tile size detection
which is limited by the size of control field, the number
of toroidal tiles we are looking for and the sample spatial
frequency content.

B. Local Markov Models

Local i-th texture region (not necessarily continuous) is
represented by the adaptive 3D causal autoregressive random
(3DCAR) field model [11], [12] because this model can be
analytically estimated as well as synthesised. Alternatively
we could use spectrally decorrelated 2D CAR or Gaussian
Markov random field (GMRF) models [13], [14]. All these
models allows analytical synthesis (see [13] for the corre-
sponding conditions) and they can be unified in the following

matrix equation form (i-th model index is further omitted to
simplify notation):

Yr = γ Zr + εr , (1)

where

Zr = [Y Tr−s : ∀s ∈ Ir]T (2)

is the η d × 1 data vector with multiindices r, s, t,
γ = [A1, . . . , Aη] is the d × d η unknown parameter
matrix with submatrices As. In the case of d 2D CAR
/ GMRF models stacked into the model equation (1) the
parameter matrices As are diagonal otherwise they are full
matrices for general 3DCAR models [12]. The model func-
tional contextual neighbour index shift set is denoted Ir and
η = cardinality(Ir) . GMRF and CAR models mutually
differ in the correlation structure of the driving noise εr
(1) and in the topology of the contextual neighbourhood
Ir (see [13] for details). As a consequence, all CAR
model statistics can be efficiently estimated analytically [11]
while the GMRF statistics estimates require either numerical
evaluation or some approximation ( [13]).

Given the known 3DCAR process history Y (t−1) =
{Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} the parameter es-
timation γ̂ can be accomplished using fast, numerically
robust and recursive statistics [11]:
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γ̂Tt−1 = V −1
zz(t−1)Vzy(t−1) ,

Vt−1 = Ṽt−1 + V0 ,

Ṽt−1 =
(∑t−1

u=1 YuY
T
u

∑t−1
u=1 YuZ

T
u∑t−1

u=1 ZuY
T
u

∑t−1
u=1 ZuZ

T
u

)
=

(
Ṽyy(t−1) Ṽ Tzy(t−1)

Ṽzy(t−1) Ṽzz(t−1)

)
,

λt−1 = Vyy(t−1) − V Tzy(t−1)V
−1
zz(t−1)Vzy(t−1) ,

where V0 is a positive definite matrix (see [11]). Although,
an optimal causal (for (2D/3D)CAR models) functional
contextual neighbourhood Ir can be solved analytically
by a straightforward generalisation of the Bayesian estimate
in [11], we use faster approximation which does not need
to evaluate statistics for all possible Ir configurations.
This approximation is based on large spatial correlations.
We start from the causal part of a hierarchical non-causal
neighbourhood and neighbours locations corresponding to
spatial correlations larger than a specified threshold (> 0.6)
are selected. The i-th model synthesis is simple direct appli-
cation of (1) for both 2DCAR or 3DCAR models. A GMRF
synthesis requires one FFT transformation at best [13].
3DCAR models provide better spectral modelling quality
than the alternative spectrally decorrelated 2D models for
motley textures at the cost of small increase of number of
parameters to be stored.

III. RESULTS

We have tested the presented novel CMRF model
on natural colour textures from our extensive texture
database (http://mosaic.utia.cas.cz, Fig.2-bark), which cur-
rently contains over 1000 colour textures, CGTextures
(http://www.cgtextures.com, Fig.2-grass), and on BTF mea-
surements from the University of Bonn [15] (Fig.1-upper
row). Tested textures were either natural, such as two tex-
tures on Fig.2, or man-made Fig.1 (ceiling panel). Each BTF
material sample included in the University of Bon database
[1] is measured in 81 illumination and viewing angles,
respectively. A material sample measurements (Fig.1) from
this database have resolution of 800×800 and size 1.2 GB.
Fig.1-upper row shows four such measurements of ceiling
panel material for different illumination angles and fixed
perpendicular view (elevation and azimuthal view angles are
zero θv = φv = 0◦). Examples on Figs.1,2 use six level
control field (K = 6) and causal neighbourhood derived
from the 20th order hierarchical contextual neighbourhood.

Resulting synthetic more complex textures (such as grass
with flowers on Fig.2) have generally better visual quality
(there is no any usable analytical quality measure) than
textures synthesised using our previously published [2],
[12]–[14] simpler MRF models (Fig.2-bottom row). Syn-
thetic multispectral textures are mostly surprisingly good

Figure 2. Synthetic enlarged colour maple bark and grass textures (odd
rows) estimated from their natural measurements (second row). The last
row contains comparative synthesis using single 3DCAR model [12].

for such a fully automatic fast algorithm. Obviously there
is no universally optimal texture modelling algorithm and
also the presented method will produce visible repetitions
for textures with distinctive low frequencies available in
small patch measurements (relative to these frequencies).
The BTF-CMRF variant of the model uses similar fun-
damental flowchart with our Markovian BTF model [2]
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(i.e. BTF space intrinsic dimensionality estimation, BTF
space segmentation, BTF subspace MRF model estimation,
subspace MRF model synthesis and interpolation of un-
measured BTF space parts) but allows to avoid its range
map estimation, range map modelling and displacement filter
steps, respectively. BTF-CMRF is capable to reach huge
BTF compression ration ∼ 1 : 1×105 relative to the original
BTF measurements but ≈ 5× lower than [2].

IV. CONCLUSIONS

The presented CMRF (BTF-CMRF) method shows good
performance on the most of tested real-world materials. It
offers large data compression ratio (only tens of parameters
per BTF and few small control field tiles) easy simulation
and exceptionally fast seamless synthesis of any required
texture size. The method can be easily generalised for colour
or BTF texture editing by estimating some local models on
one or several target textures. A drawback of the method
is that it does not allow a BTF data space restoration or
modelling of unseen (unmeasured) BTF space data unlike
some fully parametric probabilistic BTF models.
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and partially by the MŠMT grants 1M0572 DAR, 2C06019.

REFERENCES

[1] J. Filip and M. Haindl, “Bidirectional texture function model-
ing: A state of the art survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 11, pp. 1921–
1940, 2009.

[2] M. Haindl and J. Filip, “Extreme compression and modeling
of bidirectional texture function,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 29, no. 10, pp.
1859–1865, 2007.

[3] F.-C. Jeng and J. W. Woods, “Compound gauss-markov
random fields for image estimation,” IEEE Transactions on
Signal Processing, vol. 39, no. 3, pp. 683–697, 1991.

[4] S. Geman and D. Geman, “Stochastic relaxation , gibbs
distributions and bayesian restoration of images,” IEEE Trans.
Pattern Anal. Mach. Int., vol. 6, no. 11, pp. 721–741, Novem-
ber 1984.

[5] R. Molina, J. Mateos, A. Katsaggelos, and M. Vega,
“Bayesian multichannel image restoration using compound
gauss-markov random fields,” IEEE Trans. Image Proc.,
vol. 12, no. 12, pp. 1642–1654, December 2003.

[6] J. Wu and A. C. S. Chung, “A segmentation model using com-
pound markov random fields based on a boundary model,”
IEEE Trans. Image Processing, vol. 16, no. 1, pp. 241–252,
jan 2007.

[7] R. Potts and C. Domb, “Some generalized order-disorder
transformations,” in Proceedings of the Cambridge Philo-
sophical Society, vol. 48, 1952, p. 106.

[8] F. Wu, “The Potts model,” Reviews of modern physics, vol. 54,
no. 1, pp. 235–268, 1982.

[9] M. Haindl and M. Hatka, “BTF Roller,” in Texture 2005.
Proceedings of the 4th International Workshop on Texture
Analysis, M. Chantler and O. Drbohlav, Eds. Los Alamitos:
IEEE, October 2005, pp. 89–94.

[10] ——, “A roller - fast sampling-based texture synthesis algo-
rithm,” in Proceedings of the 13th International Conference
in Central Europe on Computer Graphics, Visualization and
Computer Vision, V. Skala, Ed. Plzen: UNION Agency -
Science Press, February 2005, pp. 93–96.

[11] M. Haindl and S. Šimberová, Theory & Applications of Image
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